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From Ordered Bubbles to Random Stripes: 
Pattern Formation in a Hydrodynamic 
Lattice Gas 
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A two-component momentum-conserving lattice gas with competing inter- 
actions is introduced in two dimensions. One interaction acts at short range and 
produces interfaces with surface tension. The second interaction, the negative of 
the first, acts at range a and produces modulated structures with approximate 
wavelength 2a. Depending on particle density, species concentration, and 
relative interaction strength, the equilibrium patterns formed by the model 
range from isotropic mixed and unmixed phases to hexagonally-ordered bubbles 
to randomly-oriented stripes. A Ginzburg Landau equation is proposed that 
qualitatively captures the basic features of these phase transitions. 

KEY WORDS:  Stripes; phase separation; lattice-gas automata; pattern 
formation. 

1. I N T R O D U C T I O N  

Many systems in nature, both in and out of equilibrium, exhibit spatially- 
modulated structures. Depending on the system, these periodic patterns 
can occur at widely varying scales. The "rolls" or "cells" one sees in 
Rayleigh-B6nard convection (1'2) are ubiquitous large-scale manifestations 
of such a periodic pattern. Other macroscopic examples are the structure 
of the visual cortex (3'4) and the patterns formed by ferromagnetic colloids 
subjected to an applied magnetic field. (5~ At microscopic (i.e., subcon- 
tinuum) scales, modulated patterns occur in diverse systems, such as thin 
magnetic films, (6) Langmuir monolayers,(7' a) and diblock copolymers. (9) 

Although the physics underlying each of these systems differ, one may 
consider the basic features of these modulated patterns to have resulted 
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from competing interactions. For  example, in the case of convection, ther- 
mal buoyancy competes against viscous and thermal dissipation. Similarly, 
the two-dimensional labyrinthine patterns formed by ferrofluids are also 
the consequence of a competing interaction. In this case, a short-range 
attraction that manifests itself as surface tension competes against long- 
range dipolar magnetic repulsion. 

In this paper, I introduce a simple, discrete, hydrodynamic model that 
contains just this generic feature of a competing interaction. The model, 
a momentum-conserving lattice-gas cellular automaton, (1~ is a simple 
variant of the immiscible lattice gas (ILG) m) in which the short-range ILG 
interaction that produces surface tension competes against an oppositely- 
signed ILG interaction that acts at long range. Because the interactions 
conserve momentum in addition to mass and particle type, the model 
retains much of the hydrodynamic properties of the simplest lattice 
gases.(12 15) Moreover, it allows one to consider how nonequilibrium 
dynamics affect the growth of modulated patterns. This paper, however, 
discusses only the equilibrium properties of the model. The various phase 
transitions from one type of pattern to another are first illustrated by 
numerical simulation. A simple Ginzburg-Landau equation is then 
proposed that reveals qualitatively the main features of these transitions. 

2. THE C O M P E T I N G - I N T E R A C T I O N  LATTICE GAS 

The competing-interaction lattice gas is a variant of the immiscible 
lattice-gas (ILG) model, (11) which is in turn a two-component extension 
of the simplest hydrodynamic lattice gas, due to Frisch, Hasslacher, and 
Pomeau (FHP).  (1~ In the F H P  model, identical particles of unit mass 
move with unit speed from site to site on a triangular lattice. When par- 
ticles meet at a site, they obey simple collision rules that conserve mass and 
momentum. The macroscopic behavior of this lattice gas has been shown 
to be very close to the incompressible Navier-Stokes equations. (1~1s) 

In the immiscible lattice gas, each site on the two-dimensional tri- 
angular lattice may contain red particles, blue particles, or both, but at 
most one particle (red or blue) may move in each of the six directions 
e I ..... e 6. Each site may also have a seventh stationary, or rest, particle 
moving with velocity eo and subject to the same exclusion rule. The 
configuration at a site x is then described by the Boolean variables r = {ri} 
and b = {bi}, which indicate the presence (1) or absence (0) of a red or 
blue particle, respectively, moving with velocity e~. Note that the exclusion 
rule prevents r~ and bi from both being equal to one. 

The most important feature of the ILG is the existence of a phase- 
separation transition and surface tension, both of which result from the 
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following dynamics, At a site x undergoing a collision, a color flux q is 
defined to be the difference between the red momentum and the blue 
momentum: 

6 

q[r(x), b(x)] - ~ e i E r i ( x  ) - bi(x)] (1) 
i = 1  

The local color gradient, 

f(x) -= ~ c, ~ [ r j (x  + c,) - bj(x + c,)] (2) 
i j 

is also computed. The ILG collision rule is antidiffusive: it maximizes the 
flux of color in the direction of the local color gradient. The result of a 
collision, r--* r', b--* b', is the configuration that maximizes 

q(r', b')" f (3) 

such that the number of red particles and the number of blue particles is 
conserved, 

r' Zb ,  (4) ,=2r,, 2b;= 
i i i i 

and so is the total momentum: 

2 ci(r; -~ b;) : 2 c,(ri + b,) ( 5 )  

i i 

A competing interaction is included in the model by simply incor- 
porating within the collision rule an additional dependence on a coarse-  

g r a i n e d  gradient, but with opposite sign. Specifically, the gradient 

ga(x) -= ~ c, ~ [rj(x + ac,) -- bj(x + ae,)] (6) 
i j 

is computed, where the parameter a defines the scale of coarse-graining. 2 
The result of a collision, r--* r', b-* b', is then determined by the r' and b' 
that maximize 

{ f  go'~ 
q ( r ', b ' ) " t -~ l  - ~ l---~ l ) (7) 

2 To increase isotropy, the implementation used here actually uses 12 instead of 6 points to 
estimate g~, but  the difference is negligible. 
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where ~>~0 is a parameter that controls the relative strength of the 
long-range interaction, and mass, momentum, and color are locally conser- 
ved as before. This particular form of a competing interaction is motivated 
only by simplicity, not by a particular physical system. 

3. RESULTS F R O M  S I M U L A T I O N S  

Simulations of the competing interaction model show an interesting 
dependence not only on ~, but also on the concentration 0 of the red phase. 
Below I describe results obtained when the reduced density d =  0.5 (i.e., the 
average occupancy of a site is half the maximum occupancy). This density 
is always above the 0-dependent critical density needed for the ILG to 
undergo phase separation. (16) In each example the lattice contains 
128 x 128 points, the boundaries are periodic, the long-range interaction 
length a = 5, and the initial state is a random mixture of red and blue 
particles. 

Figure 1 shows two snapshots of configurations of the competing- 
interaction model, 1000 time steps apart, for the case ~ = 1.0 and 0 = 0.5. 
These randomly-oriented stripes quickly form after about 100 time steps, 
after which the model appears to settle in an equilibrium state charac- 
terized by large and frequent fluctuations of the pattern, the effect of which 
is evident from the changes to the pattern over the 1000-time-step duration 
illustrated here. Computations of power spectra of these two-dimensional 
patterns show that the average stripe width is 3.6 lattice units, or 0.72a, 
and that the pattern is statistically isotropic within experimental accuracy. 

Figure 2 shows a result with parameters identical to those used in 
Fig. 1, but with ~ = ~ ;  i.e., no short-range attraction. This result shows 

t=3400 t=4400 

Fig. 1. Results from a simulation of the competing-interaction lattice gas. The long-range 
interaction strength is ~ =  1.0 and the red (black) concentration is 0=0.5. The initial 
configuration at time t = 0 was a random mixture. The difference between the two snapshots 
is due to fluctuations of the pattern. 
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Fig. 2. Simulation of the competing-interaction lattice gas, with c~= oo and 0=0.5. 
Comparison with the case ~ = 1.0 in Fig. 1 shows how increasing c~ increases the correlation 
length of the stripe orientations. 

that the correlation length of stripe orientations increases weakly with 
increasing c~, a consequence of the diminishing influence of the tendency of 
the short-range interaction to minimize total surface length. 

Figure 3 illustrates the dependence of the model on the red concentra- 
tion 0, where here 0=0.33 and c~= 1.0. One sees hexagonally-ordered 
bubbles, separated by a distance of order a. Initially the hexagonal ordering 
is only local, but after time the ordering extends through the entire system. 
The final ordering of the bubbles does not correspond to any lattice 
direction, but it may possibly result from either the periodic boundaries or 
the specific scheme used to compute g~. 

t=lO00 

~ / .  ",* : , : . ~  a" ~ ~ , ' ~ -~a .  " *  

t=25000 

~ '~, ,,~ . p t ,  wi ,,Ji 'l, .~  .,~ - ~ .  ~ ! 

~ , , ' 11 .  , .  ~ "~  . .z.  ,~ , ,~ ,  " .~ .  

Fig. 3. Simulation of the competing-interaction lattice gas, with c<= 1.0 and 0=0.33�9 
Comparison with the case 0 = 0.5 in Fig. 1 shows that significantly off-critical concentrations 
can result in hexagonally-ordered bubbles, while critical concentrations result in stripes�9 
The initial, mostly local, hexagonal ordering is unstable, while the later, global, hexagonal 
ordering persists for long times. 
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I=8000 t=18000 

Fig. 4. Simulation of the competing-interaction lattice gas, with ~ = ec = 0.26 and 0 = 0.5. As 
in Figs. 1-3, the initial configuration was a random mixture. If e were chosen less than c%, the 
result would be a simple phase separation; c~ > ~c would result in a pattern like those in Figs. 1 
and 2. Here, one sees both a two-phase coexistence (i.e., black separates from white), but also 
hexagonally-ordered bubbles within each phase. 

Figure 4 shows a surprising result obtained for c~ = ec = 0.26, where ec 
is the critical value of  e above which the model  creates stripes as in Figs. 1 
and 2, and below which the model  results in the simple phase separation 
described in refs. 11 and 16. Here the concentra t ion 0 = 0 . 5 ,  so the only 
difference with Figs. 1 and 2 is the value of e. The result, a coexistence of 
bo th  the bubble phase and the phase-separated state, p robably  occurs 
because c~ is low enough to prevent the format ion of  stripes, but  still high 
enough to create bubbles from the minori ty  of red particles that  would nor- 
mally be dissolved in the blue phase, and likewise from the blue particles 
dissolved in the red phase. The pat tern is qualitatively similar to those seen 
in ref. 8. 

4. G I N Z B U R G - L A N D A U  E Q U A T I O N  

To unders tand why specific patterns are selected, one normally would 
compare  the free energies of the various patterns. However,  since the I L G  
and its variants are not  thermal models, no straightforward analog of a 
free energy exists. (16'~7) Numerica l  simulations of the I L G  show, however, 
(1) the existence of  a curve analogous  to a classical spinodal  curve(16); and 
(2) the apparent  minimizat ion of  some quant i ty  (e.g., total surface length) 
during nonequi l ibr ium evolution from a mixed to an unmixed state. Thus 
I postulate that  a nondimensional  function 

V[~ (x ) ]  = F [ ~ ( x ) ]  dx (8) 
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is minimized by ILG models, where, in analogy with the classical Landau 
expansion,(18) 

F[-~b(x)] = b 2 ~ 2 ( x )  + b 4 ~ 4 ( x )  --t- - - .  (9) 

and ~b is the deviation of the red concentration from 0.5. Above the critical 
density (i.e., below the critical "temperature"), b2 < 0 and b 4 > 0 ,  yielding 
two symmetric minima representative of the blue-rich phase and the 
red-rich phase. In the following, V will be referred to as a free energy, but 
this term is used here only in analogy with real systems. 

To take account of the competing interactions in the new lattice-gas 
model, two space-dependent terms are added to Eq. (9). One is repre- 
sentative of the usual ILG interaction, and is proportional to (V~b) 2. The 
other, due to the long-range repulsive interaction, is proportional to 
(V(~)~)2 = (V~)~, where ( u2 2,1j2) 
<f(xl,x2)>a=~f_oofoU ~F . f(xl_u, x2_l))dudl) (10) 

and H is the tophat defined by 3 

1, [rl ~< 1/2 
H(r) = O, Irl > 1/2 (11) 

These space-dependent terms are then added to Eq. (9) to obtain the 
following Ginzburg-Landau equation: 

F ( ~ )  = b2~fi 2 + b 4 ~  4 --~ aZ[(V~) 2 - cx ( V ~ b ) a  2 ] (12) 

The parameter ~ > 0  controls the relative strength of the long-range 
interaction and the factor of a 2 is chosen for dimensional consistency (after 
an appropriate rescaling of b2 and b4). Equation (12) is similar to the 
Ginzburg-Landau equations studied in refs. 6 and 7 except for the 
construction of the repulsive interaction term, which is motivated here by 
the two-scale symmetry in Eq. (7). 

The gradient terms in Eq. (12) have the following interpretation. The 
positive contribution represents ILG surface tension, which acts to mini- 
mize surface lengths. The negative contribution derives from the long-range 
repulsive interaction of the competing-interaction model; this term acts to 
maximize total surface length, but at a coarse-grained length scale. The 

3 The diameter of the convolutional smoother is chosen to be a times unity, where unity is the 
diameter of the (identity) operator that may be considered to have been applied to the 
unsmoothed concentration field. 

822/71/3-4-19 
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competition between these two contributions can result in the selection of 
a dominant wavenumber of concentration variations. By decomposing 06 
via the Fourier transform relation 

~(k) = 06(x) e - ik 'x  dx (13) 

we find, assuming ~(k)=q~o, that the dominant wavenumber k =  Iki is 
determined by the particular k that least contributes to the free energy V, 
or, equivalently, to the integral 

fol k - (16ct/a 2) J~(ak/2)] k62(k) dk (14) 

Here J1 is a Bessel function of the first kind, order 1. For reasonable 
choices of ~ and a, the term in brackets on the right-hand side is minimized 
close to the absolute minimum of - j 2 ( a k / 2 ) ,  or for ak ~0.58. Thus the 
competing interactions predict a modulated structure with wavenumber 
q /2~O.58 /a .  This is about 10-20% short of values observed in the 
lattice-gas model. 

In a manner similar to refs. 6, 7, and 19, we consider two trial 
functions for 06(x), a striped phase 

and a hexagonal phase 

where in the latter case, 

06s = 060 + 06q cos qx (15) 

3 
06H=060 q- E q~qCOS(qi'x) (16) 

i=1 

3 
Iq i [ -q ,  ~ q i=O (17) 

i = l  

Although the parallel stripes implied by 06s are clearly not the random 
stripes of Fig. 1, for the purpose of constructing a phase diagram this 
approximation is adequate. 

Substitution of these trial solutions into Eqs. (12) and (8) gives, for the 
striped phase, 

V s = b 2 ( O 2 -~- ~-~2 ) --[- b 4 ( O 4 

-16~06~J~ ( 7 )  

2 2 3 4) 1 q)qa q _b3~O~qq_~ ~ q_ -2 2 2 

(18) 
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and for the hexagonal phase, 

45 4 \ 3 2 2 2 Vn=b2(O2q-~qJ2) q-b4(O4q-9~gf~q---~Oq)q-~qa q 

(19) 

After defining the dimensionless parameters 

2 b4 g c 2 C 0- a2q2, q= a2q2 , 6 = a2q2 (20) 

Eqs. (18) and (19) simplify to 

16~ 2 2 VS=(~ ( C2"q- C~2)"}-( c4"}- 3C2C~-1-~C4) -}- ~C2--a-~ CqJ1 ( 2 )  (21) 

and 

Vt4=a(c~+~c~)+(c4+9c2c~+4---~c4+6CoC3q) 

22(7 ) a2q2 CqJ1 

3 2 "]-"~ C q 

(22) 

where for clarity the terms are organized as they appear in Eq. (12). 
The value of the modulation amplitude Cq pertinent to each phase is 

obtained by minimizing V s and VH with respect to Cq. If Cq is set to zero, 
then we obtain the free energy of the isotropic, unmodulated phase, 

4 (23) V~ = &2 + Co 

As in refs. 6 and 7, a phase diagram in the plane of dimensionless 
"temperature" 6 and concentration Co is obtained by minimizing Vi-#Co 
with respect to i, where i may be S, H, or I, and # is the "chemical poten- 
tial." The usual common tangent construction then yields not only regions 
where pure hexagonal, striped, or isotropic phases exist, but also regions 
where two phases can coexist. After performing these minimizations 
numerically, we obtain the phase diagram in Fig. 5. In this case, e = 2.0. 
The results in the vicinity of co = 0 and ~ ~ 0 show features qualitatively 
similar to what was evident in simulations of the lattice-gas model: 
quenched mixtures with nearly equal fractions of blue and red result in 
stripes, while the hexagonally-ordered bubble phase occurs when the 
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-1.0 o.o 1.0 

cO 

Fig. 5. The phase diagram that results from an analysis of Eq. (12), for the case ~ = 2.0. Here 
6 is a dimensionless temperature and Co is proportional to concentration minus one-half. 
Isotropic phases are either red or blue, the striped phase is denoted by S, and the hexagonal 
phase by H. The S/H, H/Red, etc., denote a two-phase coexistence. The phase diagram is only 
valid in the region near the critical point Co = 0, ~ ~ 0. For e > ~c = 1.25 the phase diagram 
remains qualitatively the same; for c~<c~,., however, the striped and hexagonal phases 
disappear, leaving only isotropic one-phase and two-phase regions. 

minority concentration is significantly less than 50%. In Fig. 5 the 
hexagonal phase disappears below 6 ~ - 1 ,  while the stripe phase disap- 
pears below 6 ~ -2.7.  This behavior is not present in the lattice-gas model, 
but it occurs here because these regions are far from the critical point and 
therefore far from the region of validity of Eq. (12). 

Another interesting point concerns the dependence of the phase 
diagram on e, the strength of the long-range repulsive interaction. For 

> ec = 1.25, the phase diagram remains essentially as in Fig. 5, but with 
particular boundaries in different locations. (For example, the critical tem- 
perature 6c at Co=0 increases with increasing e.) However, when e <c~c, 
the modulated stripe and hexagonal phases disappear from the phase 
diagram, leaving only isotropic two-phase and one-phase regions. Although 
the lattice-gas result in Fig. 4 occurs at the analogous critical point in the 
lattice-gas model (for which c% =0.26), Eq. (12) is too simple to capture 
that behavior. (In the analytic formulation, the pattern in Fig. 4 would 
correspond to simultaneous coexistence of red-rich and blue-rich hexagonal 
and isotropic phases.) 

Lastly, it is interesting to note that the Ginzburg-Landau phase 
diagram for e > c% is qualitatively similar to the one obtained in ref. 7 in a 
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study of Langmuir monolayers, in which the long-range repulsive inter- 
action was integrated across the entire two-dimensional plane. Although 
Eq. (12) is comparatively a mathematical artifice, its simple two-scale 
interaction is sufficient to capture a similar equilibrium phase diagram. 

4. C O N C L U S I O N S  

The competing-interaction lattice-gas model yields a variety of inter- 
esting two-dimensional modulated patterns. The randomly-striped and 
hexagonally-ordered patterns have been observed in other models, ~2~ 
but the model presented here is in a sense simpler, in that the competition 
arises from a simple two-scale interaction of identical terms, differing only 
by their sign and scale. 

The Ginzburg-Landau equation studied here is a qualitative analytical 
model of the phase transitions observed in the competing-interaction 
lattice-gas: As in the lattice gas, a phase transition from the striped phase 
to the hexagonal phase occurs at off-critical concentrations. Although the 
long-range interaction term of this new Ginzburg-Landau equation is 
considerably different than the one studied in ref. 7, essentially the same 
phase diagram is derived. This may be viewed as a consequence of the 
wavenumber selection implied by the convolutional smoother in Eq. (10). 
This convolutional operator is perhaps the simplest operator that creates 
wavenumber selection. (3'4~ 

A surprising result of the competing-interaction lattice-gas model is its 
behavior in the vicinity of the critical value of c~, the strength of the 
long-range interaction. In this case one can see bubbles within bubbles, 
an interesting coexistence of different phases that is not predicted by the 
Ginzburg-Landau analysis. 

Finally, I note that this study has explored only the equilibrium 
properties of the competing-interaction lattice gas. Since the model includes 
hydrodynamics, its nonequilibrium pattern formation, including the effects 
of shear f low, (23) are  of considerable interest for future work. 
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